RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 110(152), Number 3(11), Pages 428–439 (Mi sm2464)

This article is cited in 11 papers

Limits of Banach spaces. Imbedding theorems. Applications to Sobolev spaces of infinite order

Yu. A. Dubinskii


Abstract: For a sequence of Banach spaces ${X_1}\supset{X_2}\supset\dotsb$, a concept of limit $X_\infty=\lim_{r\to\infty}X_r$ is introduced that is a natural generalization of the concept of the limit of a monotonically decreasing numerical sequence. Necessary and sufficient conditions are obtained for an imbedding $X_\infty\subset Y_\infty$ and for a compact imbedding. Applications are given to the Sobolev spaces of infinite order $W^\infty\{a_\alpha,p\}$.
Necessary and sufficient conditions bearing an algebraic character are established for the imbedding $W^\infty\{a_\alpha,2\}(\mathbf R^\nu)\subset W^\infty\{b_\alpha,2\}(\mathbf R^\nu)$. Sufficient algebraic imbedding conditions are obtained for the spaces $W^\infty\{a_\alpha,p\}(\mathbf R^1)$ for any $p>1$.
Bibliography: 8 titles.

UDC: 517.946

MSC: Primary 46E35; Secondary 46B99

Received: 17.10.1978


 English version:
Mathematics of the USSR-Sbornik, 1981, 38:3, 395–405

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025