RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 4(12), Pages 539–546 (Mi sm2482)

This article is cited in 3 papers

Uniqueness and stability of the solution of a problem of geometry in the large

Yu. E. Anikonov, V. N. Stepanov


Abstract: This paper considers the problem of determining a convex surface from the area $F(n)$ of its orthogonal projection on any plane $(x,n)=0$ and the area $S(n)$ of the portion of the surface illuminated in the direction $n$. It is proved that in a certain class a convex surface is uniquely defined (up to translation) by a function $\varphi(n)=2aF(n)+bS(n)$ for $a\ne0$, $b\ne0$, $a+b\ne0$. Moreover, the surface is analytic if and only if $\varphi(n)$ is an analytic function on the unit sphere. The surface is shown to be stable, and a quantitative estimate related to stability is given.
Bibliography: 6 titles.

UDC: 514.17

MSC: 53C45

Received: 23.12.1980


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:4, 483–490

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024