RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 105(147), Number 1, Pages 3–27 (Mi sm2513)

This article is cited in 2 papers

Approximation, by rational functions, of convex functions with given modulus of continuity

A. P. Bulanov


Abstract: We denote by $R_n[f]$ the least deviation of the continuous function $f(x)$, $x\in[a,b]$, from the rational functions of order at most $n$.
We establish the following theorems.
Theorem 1. Let $f(x)$ be convex on $[a,b]$ $(-\infty<a<b<+\infty)$ with modulus of continuity $\omega(\delta,f)$. Then
$$ R_n[f]\leqslant c\frac{\ln^6n}{n^2}\max_{(b-a)e^{-n}\leqslant\theta\leqslant b-a}\biggl\{\omega(\theta)\ln\frac{b-a}{\theta}\biggr\},\qquad n=2,3,\dots, $$
where $c$ is an absolute constant.
\medskip Theorem 2. There exist a convex function $f^*(x)$ and a sequence $n_k\nearrow\infty$ such that 1) $\omega(\delta,f^*)\leqslant(\ln(e/\delta))^{-\gamma}$, $0<\delta\leqslant1$, and 2) $R_{n_k}[f^*]\geqslant c_1\gamma/n^{1-\gamma}_k$, where $c_1$ is an absolute constant.
Bibliography: 8 titles.

UDC: 517.51

MSC: 41A20

Received: 13.05.1977


 English version:
Mathematics of the USSR-Sbornik, 1978, 34:1, 1–24

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024