RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 110(152), Number 4(12), Pages 597–608 (Mi sm2514)

This article is cited in 4 papers

Integral moduli of smoothness and the Fourier coefficients of the composition of functions

A. A. Sahakian


Abstract: Using the integral modulus of smoothness, estimates for the Fourier coefficients of a composition of functions are obtained in this paper. It is proved, for example, that for any function $f(x)\in C(0,2\pi)$ and any positive sequence $\{\varepsilon_n\}_{n=1}^\infty$ with
$$ 1=\varepsilon_1\geqslant\varepsilon_2\geqslant\dotsb,\qquad\sum_{n=1}^\infty\frac{\varepsilon_n}n=\infty $$
there exists a monotone continuous function $\tau(x)$ ($\tau(0)=0$, $\tau(2\pi)=2\pi$) such that
$$ |a_n(F)|+|b_n(F)|= O(\varepsilon_n n^{-1}+n^{-3/2}), $$
where $a_n(F)$ and $b_n(F)$ are the Fourier coefficients of the function $F(x)=f(\tau(x))$.
Bibliography: 4 titles.

UDC: 517.51

MSC: 42A16

Received: 11.05.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 38:4, 549–561

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025