RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 133(175), Number 3(7), Pages 293–313 (Mi sm2563)

This article is cited in 19 papers

On the basis property for a certain part of the eigenvectors and associated vectors of a selfadjoint operator pencil

A. S. Markus, V. I. Matsaev


Abstract: Let $L(\lambda)=A+\lambda I+\lambda^2B$ be a quadratic pencil, where $A$ and $B$ are compact selfadjoint operators on a separable Hilbert space $\mathfrak H$. Two subsystems of eigenvectors and associated vectors are constructed for the pencil $L(\lambda)$, each of them forming a Riesz basis for $\mathfrak H$.
Bibliography: 24 titles.

UDC: 517.984

MSC: Primary 47A56, 47A70; Secondary 47A10, 47B10, 47B15

Received: 09.04.1986


 English version:
Mathematics of the USSR-Sbornik, 1988, 61:2, 289–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025