RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 111(153), Number 2, Pages 266–278 (Mi sm2591)

This article is cited in 2 papers

On the generation of finite groups by classes of involutions

A. A. Makhnev


Abstract: Let $D$ be an invariant subset of involutions of the finite group $G$. $D$ satisfies the condition of coherence, if for any two distinct commuting involutions of $D$ their product also belongs to $D$. $D$ satisfies the condition of separability if the product of any two involutions of is a 2-element or a $2'$-element.
In this paper it is proved that if the finite group $G$ is generated by an invariant subset of involutions $D$ satisfying the coherence and separability conditions, and if $D\cap O_2(G)=\varnothing$, then either $G$ has a Sylow 2-subgroup of order 2, or $Z(G)$ has odd order, $G=G'$, and the factor group $G/Z(G)$ is isomorphic to one of the following simple groups: $L_2(p)$, $p$ a Fermat or a Mersenne prime number, $L_2(q)$, $Sz(q)$, $U_3(q)$, $L_3(q)$, $G_2(q)$ ($G_2(q)'$ respectively), $^3D_4(q)$, $q$ even, $A_6$ or $J_2$.
Bibliography: 25 titles.

UDC: 519.44

MSC: Primary 20F05; Secondary 20D20

Received: 14.05.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 39:2, 243–253

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025