RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 111(153), Number 2, Pages 293–307 (Mi sm2593)

This article is cited in 5 papers

On the representation of integral-valued random measures and local martingales by means of random measures with deterministic compensators

Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev


Abstract: The relation $\mu(\omega;A)=p(\omega;\psi^{-1}_\omega(A))$ between integral-valued measures $\mu(\omega;\cdot\,)$ and $p(\omega;\cdot\,)$ and the compensators $\nu(\omega;\cdot\,)$ and $q(\,\cdot\,)$, respectively, is established ($q$ is a deterministic measure), where $\psi_\omega(\,\cdot\,)$ is a predictable mapping, provided that $\nu(\omega;A)=q(\psi^{-1}_\omega(A))$. This result is used to represent a local martingale in the form of a sum of stochastic integrals with respect to a continuous Gaussian martingale and the martingale measure $p-q$.
Bibliography: 16 titles.

UDC: 519.2

MSC: 60G57, 60G44

Received: 11.01.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 39:2, 267–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024