RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 106(148), Number 4(8), Pages 622–640 (Mi sm2611)

This article is cited in 9 papers

On the singular spectrum in a system of three particles

D. R. Yafaev


Abstract: Let $H$ be the energy operator of a system of three pairwise interacting particles whose pair potentials admit the estimate
$$ |v_\alpha(x)|\leqslant C(1+|x|)^{-a} \qquad a>\frac{11}4,\quad x\in\mathbf R^3, $$
and suppose the subsystems of two particles have no virtual levels. It is established that the singular continuous spectrum of $H$ is empty and its positive eigenvalues have no finite limit points. The considerations of the paper are based on a study of Faddeev's equations in coordinate representation and an application of imbedding theorems for anisotropic Sobolev classes in the space $L_2(\mathbf S^5)$.
Bibliography: 13 titles.

UDC: 517.43+517.948.35

MSC: Primary 81F10; Secondary 47A40

Received: 19.07.1977


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:2, 283–300

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025