RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 107(149), Number 2(10), Pages 245–258 (Mi sm2615)

This article is cited in 14 papers

Convergence of Fourier series almost everywhere and in the $L$-metric

Sh. V. Kheladze


Abstract: The following theorems are proved.
Theorem 1. There exists a constant $C>0$ such that for any function $f\in L(0,2\pi)$ there is a measurable function $F$ for which $|F|=|f|$, and
a) $\displaystyle\int_0^{2\pi}\sup_n|S_n(F)(x)|\,dx\leqslant C\int_0^{2\pi}|f(x)|\,dx$,
b) $\displaystyle\int_0^{2\pi}\sup_n|{\widetilde{S}}_n(F)(x)|\,dx\leqslant C\int_0^{2\pi}|f(x)|\,dx$,
c) $\displaystyle\int_0^{2\pi}|\widetilde{F}(x)|\,dx\leqslant C\int_0^{2\pi}|f(x)|\,dx$,
\noindent where $S_n(F)$ is a partial sum of the Fourier series of $F$, $\widetilde S_n(F)$ is a partial sum of the conjugate Fourier series, and $\widetilde F$ is the conjugate function to $F$.
\medskip Theorem 2. {\it For any function $f\in L(0,2\pi)$ and $\varepsilon>0$ there exists a measurable function $F$ such that $|F|=|f|$, $\mu\{x\in[0,2\pi):F(x)\ne f(x)\}<\varepsilon$ ($\mu$ is Lebesgue measure), and both the Fourier series of $F$ and its conjugate series converge almost everywhere and in the metric of $L$.}
Bibliography: 11 titles.

UDC: 517.51

MSC: Primary 42A20, 42A40; Secondary 42A04, 42A08

Received: 20.12.1977


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:4, 527–539

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024