RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 133(175), Number 4(8), Pages 497–507 (Mi sm2625)

This article is cited in 12 papers

On normal bases of a finite field

V. M. Sidel'nikov


Abstract: In this paper irreducible polynomials $f(x)$ of degree $t$ are constructed over a finite field of characteristic $p>0$ with linearly independent roots, where the integer $t$ divides one of the numbers $p$, $q-1$, or $q+1$. Properties of normal bases of the field $F_{q^t}$ over $F_q$ formed by the roots $\{\omega_1,\dots,\omega_t\}$ of $f(x)$ are also studied. In particular, it is shown that the “multiplication table” of such a basis has the form $\omega_i\omega_j=\alpha_{i-j}\omega_i+\alpha_{j-1}\omega_j+\gamma$, $i\ne j$, $\alpha_k$, $\gamma\in F_q$.
Bibliography: 3 titles.

UDC: 512.62

MSC: 12E20, 12E05

Received: 03.05.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 61:2, 485–494

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024