RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 102(144), Number 2, Pages 173–181 (Mi sm2644)

The $\mathfrak p$-adic zeta-fucntion of an imaginary quadratic field and the Leopoldt regualtor

M. M. Vishik


Abstract: This paper gives a construction of the $\mathfrak p$-adic zeta-function of an imaginary quadratic field which can be used to express the class number with conductor $\mathfrak p^n$ of complex multiplication fields.
We obtain an exact formula for the norm of the Leopoldt regulator of such fields; this formula follows from the existence of a $\Gamma$-module associated to the regulator.
Bibliography: 9 titles.

UDC: 511.61

MSC: Primary 12B30, 14B20; Secondary 12A25

Received: 19.04.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 31:2, 151–158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025