RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 7, Pages 109–122 (Mi sm2662)

This article is cited in 29 papers

Padé approximants of the Mittag-Leffler functions

A. P. Starovoitov, N. A. Starovoitova

Francisk Skorina Gomel State University

Abstract: It is shown that for $m\le n$ the Padé approximants $\{\pi_{n,m}(\,\cdot\,;F_{\gamma})\}$, which locally deliver the best rational approximations to the Mittag-Leffler functions $F_\gamma$, approximate the $F_\gamma$ as $n\to\infty$ uniformly on the compact set $D=\{z:|z|\le1\}$ at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of $\exp{z}$ are proved for the Mittag-Leffler functions.
Bibliography: 28 titles.

UDC: 517.51+517.53

MSC: 41A21, 33C05

Received: 08.08.2006 and 11.04.2007

DOI: 10.4213/sm2662


 English version:
Sbornik: Mathematics, 2007, 198:7, 1011–1023

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025