RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 107(149), Number 2(10), Pages 227–244 (Mi sm2672)

This article is cited in 11 papers

Rational approximation and absolute convergence of Fourier series

E. A. Sevast'yanov


Abstract: It is proved that if $R_n(f)$ are the smallest uniform deviations of the $2\pi$-periodic function $f$ from rational trigonometric functions of order at most $n$ then the condition $\sum R_n(f)<\infty$ is an unimprovable condition of the absolute convergence of the trigonometric Fourier series of $f$.
Bibliography: 20 titles.

UDC: 517.522.3

MSC: 42A10, 42A28

Received: 06.09.1977


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:4, 509–525

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025