RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 107(149), Number 3(11), Pages 364–415 (Mi sm2679)

This article is cited in 69 papers

Absolute continuity and singularity of locally absolutely continuous probability distributions. I

Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev


Abstract: Let $(\Omega,\mathscr F)$ be a measurable space provided with a nondecreasing family of $\sigma$-algebras ($\mathscr F_t)_{t\geqslant0}$ with $\mathscr F=\bigvee_{t\geqslant0}\mathscr F_t$ and $\widetilde{\mathsf P}$ and $\mathsf P$ two locally absolutely continuous probability measures on $(\Omega,\mathscr F)$, i.e., such that $\widetilde{\mathsf P}_t\ll\mathsf P_t$ for $t\geqslant0$ ($\widetilde{\mathsf P}_t$ and $\mathsf P_t$ are the restrictions of $\widetilde{\mathsf P}$ and $\mathsf P$ to $\mathscr F_t$). One asks when $\widetilde{\mathsf P}\ll \mathsf P$ or $\widetilde{\mathsf P}\perp\mathsf P$. An answer to this question is given in terms of the convergence set of a certain increasing predictable process constructed for the martingale $\mathfrak Z=(\mathfrak Z_t,\mathscr F_t,\mathsf P)$ with $\mathfrak Z_t=d\widetilde{\mathsf P}_t/d\mathsf P_t$. Actually, the somewhat more general situation of $\theta$-local absolute continuity of measures is studied. The proof of the fundamental theorem is based on a series of results that are of independent interest.
In § 2 the theory of integration with respect to random measures is developed. § 4 deals with the convergence sets of semimartingales, and § 5 with the transformation of the predictable characteristics of a semimartingale under a locally absolutely continuous change of measure. Sufficient conditions are given in § 7 for the uniform integrability of nonnegative local martingales.
Bibliography: 24 titles.

UDC: 519.2

MSC: Primary 60G30, 60G45, 60H05; Secondary 28A40, 60G25, 60G40

Received: 11.01.1978


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:5, 631–680

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024