RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 102(144), Number 2, Pages 216–247 (Mi sm2680)

This article is cited in 6 papers

An estimate for the subharmonic difference of subharmonic functions. I

I. F. Krasichkov-Ternovskii


Abstract: Let $u$, $v$ and $w=u-v$ be subharmonic functions in the half-plane $\Pi:\operatorname{Re}\omega>v$ and suppose that $u(\omega)$ and $v(\omega)$ are majorized by a positive function of the form $M(\omega)=\rho T(\rho,\tau)$, where $\rho=|\omega|$ and $\tau=1-\frac2\pi|\arg\omega|$.
An inequality for the subharmonic difference $w=u-v$ is obtained in terms of the function $T(t,\tau)$, $0<t<\infty$, $0<\tau<1$, which then gives an estimate for the difference from above. This inequality is carried over by conformal mappings to a class of regions with cusps (horn regions).
Bibliography: 12 titles.

UDC: 517.53

MSC: Primary 31A05, 30A04; Secondary 30A42

Received: 09.02.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 31:2, 191–218

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025