RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 107(149), Number 4(12), Pages 572–600 (Mi sm2696)

This article is cited in 10 papers

On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations

I. Kametaka, O. A. Oleinik


Abstract: In this paper functions $u(x)$ satisfying the inequality $L(u)+k(x)f(u)\leqslant0$ in a domain $\Omega$ are studied. Here $L(u)$ is a linear second order elliptic operator with positive definite characteristic form, $k(x)\geqslant0$, and $f(u)$ is defined in an interval $u^-<u<u^+$, in which $f(u)>0$, $f'(u)\geqslant0$ and $\int_u^{u^+}\frac{ds}{f(s)}<\infty$.
Bibliography: 13 titles.

UDC: 517.946

MSC: Primary 35J60; Secondary 35J25

Received: 18.07.1978


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:6, 823–849

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024