RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 99(141), Number 1, Pages 84–120 (Mi sm2707)

This article is cited in 4 papers

A generalized integral and conjugate functions

I. A. Vinogradova


Abstract: The author gives a descriptive definition of the $LG^*$-integral. The $LG^*$-integral extends the Lebesgue integral and coincides with it for nonnegative functions. For a function $f(x)$, $LG^*$-integrable on $[0,2\pi]$, the $LG^*$-Fourier series is defined and is almost everywhere $(C,1)$ summable to $f(x)$; the conjugate series is $(C,1)$ summable to $\widetilde f(x)$, which is also $LG^*$-integrable on $[0,2\pi]$, and is its $LG^*$-Fourier series.
Bibliography: 12 titles.

UDC: 517.397

MSC: Primary 42A40; Secondary 26A39

Received: 10.04.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 28:1, 73–106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025