RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 112(154), Number 2(6), Pages 193–206 (Mi sm2720)

This article is cited in 17 papers

The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge–Ampère type

N. M. Ivochkina


Abstract: A priori boundedness of the solution of the Dirichlet problem is proved for the equation $F(m;u)=f(x,u,u_x)$, where $F(m;u)$ is the sum of all principal minors of order $m$ in the Hessian $\det(u_{xx})$. The boundedness in question is relative to the $C^2(\Omega)$-norm and is demonstrated by combining the methods of integral inequalities and barrier functions.
Bibliography: 7 titles.

UDC: 514.946+517.994

MSC: 35J65, 35B45

Received: 06.07.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 40:2, 179–192

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025