RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 99(141), Number 4, Pages 483–513 (Mi sm2769)

This article is cited in 23 papers

Euler products for congruence subgroups of the Siegel group of genus $2$

S. A. Evdokimov


Abstract: In this paper the construction is begun of a theory of Dirichlet series with Euler expansion which correspond to analytic automorphic forms for congruence subgroups of the integral symplectic group of genus $2$. Namely, for an arbitrary positive integer $q$ a connection is revealed between the eigenvalues $\lambda_F(m)$ of an eigenfunction $F\in\mathfrak M_k\bigl(\Gamma_2(q)\bigr)$ of all the Hecke operators $T_k(m)$ ($(m,q)=1$), where $\Gamma_2(q)$ is the principal congruence subgroup of degree $q$ of the group $\Gamma_2=\operatorname{Sp}_2(\mathbf Z)$, and its Fourier coefficients. This connection can be written in the language of Dirichlet series in the form of identities; here an infinite sequence of identities arises, indexed by classes of positive definite integral primitive binary quadratic forms equivalent modulo the principal congruence subgroup of degree $q$ of $\operatorname{SL}_2(\mathbf Z)$.
Bibliography: 15 titles.

UDC: 511.61

MSC: Primary 10D05; Secondary 10C05

Received: 16.10.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 28:4, 431–458

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025