RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 99(141), Number 4, Pages 582–593 (Mi sm2776)

On the summability of positive solutions of partial differential equations of arbitrary order in a neighborhood of a characteristic manifold

V. A. Kondrat'ev, S. D. Èidel'man


Abstract: A nonnegative solution of the equation $\sum_{|\alpha|\leqslant m}a_\alpha(x)D^\alpha u=0$ is considered in an arbitrary domain $G$ with smooth boundary $\Gamma$.
The surface $\Gamma$ can contain a characteristic manifold $\Gamma_0$. Conditions on $\Gamma_0$ are obtained ensuring that $\int_Gu\,dx$ is always finite. These conditions turn out to be best possible.
Bibliography: 4 titles.

UDC: 517.946

MSC: Primary 35B99, 35G99; Secondary 35K05

Received: 06.02.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 28:4, 521–531

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024