RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 12, Pages 135–156 (Mi sm280)

This article is cited in 3 papers

Estimating the $L_p$-norm of an algebraic polynomial in terms of its values at the nodes of a uniform grid

I. I. Sharapudinov

Daghestan State University

Abstract: An estimate of the $L_p$-norm, $p\geqslant 1$, of an arbitrary algebraic polynomial of degree $\leqslant n$ in terms of its values at $N>n$ nodes of a uniform grid is obtained. This estimate shows, in particular, that for $N\geqslant \theta n^2$ with $\theta >0$ the $L_p$-norm of a polynomial grows as $n\to\infty$ not faster than the $L_q$-means, $q\geqslant p$, of this polynomial over the nodes of the grid times some power of $n$.

UDC: 517.98

MSC: Primary 26C05, 26D05; Secondary 33A65, 42C10

Received: 22.04.1996

DOI: 10.4213/sm280


 English version:
Sbornik: Mathematics, 1997, 188:12, 1861–1884

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024