RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 103(145), Number 1(5), Pages 131–142 (Mi sm2804)

This article is cited in 6 papers

On the dependence of the boundary properties of an analytic function on the rapidity of its approximation by rational functions

E. P. Dolzhenko


Abstract: We investigate the behavior of the means of the modulus of the derivative of an analytic function $f(z)$ which is continuous up to the boundary of its domain $G$, as it depends on the behavior of $R_n(f,\overline G)$, the least deviations of $f$ on $\overline G$ from the rational functions of degree $\leqslant n$. For example, if $p\geqslant1$, $p-1<\alpha\leqslant p$ and $\sum n^{-\alpha+p-1}R_n^p(f,\overline D)<\nobreak\infty$, then $(1-|z|)^{\alpha-1}|f'(z)|^p$ is summable over the area of the disk $D:|z|<1$ (for $p-1<\alpha<p$ this is best possible).
Bibliography: 6 titles.

UDC: 517.53

MSC: Primary 30A82; Secondary 41A20

Received: 21.11.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 32:1, 116–126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025