RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 103(145), Number 2(6), Pages 285–292 (Mi sm2808)

This article is cited in 9 papers

The exact order of the best approximation to convex functions by rational functions

V. A. Popov, P. P. Petrushev


Abstract: We show that the least uniform rational deviations $R_n(f)$ from the function $f(x)$, continuous and convex on the interval $[a,b]$, satisfy the condition $R_n(f)=o(1/n)$ as $n\to\infty$, and that $R_n(f)=O(1/n)$ uniformly for the continuous convex functions $f$ whose absolute values are bounded by unity. These estimates are precise with respect to the rate of decrease of the right-hand sides.
Bibliography: 16 titles.

UDC: 517.5

MSC: 41A20

Received: 11.10.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 32:2, 245–251

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025