RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 113(155), Number 3(11), Pages 437–463 (Mi sm2809)

This article is cited in 15 papers

On linear widths of Sobolev classes and chains of extremal subspaces

V. E. Maiorov


Abstract: The linear and trigonometric $n$-diameters of the class $\widetilde W^r_p$ in $L_q$ are calculated in this paper.
For the linear diameter $\lambda_n$ it is proved that, when $p<2<q$ and $r>\frac1p+\frac12$,
$$ \lambda_n(\widetilde W^r_p,L_q)\asymp\begin{cases}n^{-r+\frac1p-\frac12},&\frac1p+\frac1q\leqslant1,\\n^{-r+\frac12-\frac1q},&\frac1p+\frac1q>1.\end{cases} $$

This formula, together with the known results for other $(p,q)$, finishes the solution of the problem of asymptotic computation of the linear diameters for the Sobolev classes in the one-dimensional periodic case when $r>\frac1p+\frac12$.
Bibliography: 28 titles.

UDC: 517.5

MSC: Primary 41A46, 46B20, 46E35; Secondary 46F05, 41A60, 42B15

Received: 27.02.1979


 English version:
Mathematics of the USSR-Sbornik, 1982, 41:3, 361–382

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024