RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 100(142), Number 1(5), Pages 59–88 (Mi sm2856)

This article is cited in 37 papers

Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients

I. V. Cherednik


Abstract: We consider curves having either a uniformization by the upper half-plane or a Mumford uniformization by discrete arithmetic subgroups of $PGL_2(k_w)$ corresponding to quaternion algebras with center $k$, with $k$ a global field of (possibly nonzero) characteristic $p$, $k$ being totally real if $p = 0$; $k_w$ is the completion of $k$ with respect to a valuation $w$ which is real or non-Archimedean. The principal result is a theorem that in characteristic $p = 0$ the curves corresponding to algebras related in a certain sense coincide.
Bibliography: 10 titles.

UDC: 513.015.7

MSC: 14H10, 20G30

Received: 09.04.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 29:1, 55–78

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025