RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 103(145), Number 4(8), Pages 480–489 (Mi sm2921)

This article is cited in 1 paper

Induced extremal surfaces

V. I. Bernik


Abstract: Under general assumptions on the functions $f_1(x),\dots,f_n(x)$ and $\varphi_1(y_1,\dots,y_k),\dots,\varphi_m(y_1,\dots,y_k)$ it is proved that the inequality
$$ \|a_1f_1+\dots+a_nf_n+a_{n+1}\varphi_1+\dots+a_{n+m}\varphi_m\|<H^{-(m+n)-\varepsilon}, $$
where $\|\alpha\|$ is the distance from $\alpha$ to the nearest integer and $H=\max|a_i|$, $i=1,\dots,n+m$, has only a finite number of solutions in integers $a_1,\dots,a_{n+m}$ for almost all $(x,y_1,\dots,y_k)\in R^{k+1}$. This establishes the extremality of the surface $(f_1,\dots,f_n,\varphi_1,\dots,\varphi_m)$.
Bibliography: 11 titles.

UDC: 511

MSC: 10K15, 10B45, 14G99

Received: 25.05.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 32:4, 413–421

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024