RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 101(143), Number 1(9), Pages 3–20 (Mi sm2928)

This article is cited in 15 papers

On spectral decompositions of functions in $H_p^\alpha$

Sh. A. Alimov


Abstract: The paper is devoted to a study of the spectral resolutions $E_\lambda f$ and their Riesz means $E_\lambda^sf$, corresponding to selfadjoint extensions of elliptic differential operators $A(x,D)$ of order $m$ in an $N$-dimensional domain $G$. It is proved that if $f$ belongs to the Nikol'skii class $\overset\circ H{}_p^\alpha(G)$ and has compact support in $G$, then for
$$ \alpha>0,\quad s\geqslant0,\quad\alpha+s\geqslant\frac{N-1}2,\quad p\alpha>N $$
the Riesz means $E_\lambda^sf$ converge for $\lambda\to\infty$ to $f$ uniformly on each compact set $K\subset G$.
Bibliography: 9 titles.

UDC: 517.43

MSC: Primary 35J99, 47F05; Secondary 47B25, 40G05

Received: 30.10.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 30:1, 1–16

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024