RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 104(146), Number 1(9), Pages 89–139 (Mi sm2938)

This article is cited in 3 papers

Conjugate functions and the restricted Denjoy integral

T. P. Lukashenko


Abstract: We study the functions conjugate to Denjoy integrable functions. In particular, it is shown that if $f$ and its conjugate $\overline f$ are integrable in the restricted Denjoy sense then the conjugate series coincides with the Fourier–Denjoy series of the conjugate function, $(D^*)\sigma[\overline f]=(D^*)\overline\sigma [f]$, and the Riesz equation $(D^*)\int_0^{2\pi}\varphi\overline f\,dx=-(D^*)\int_0^{2\pi}f\overline\varphi\,dx$ holds provided that $\varphi$ and its conjugate function $\overline\varphi$ are of bounded variation.
Bibliography: 20 titles.

UDC: 517.397+517.522.3

MSC: Primary 42A40; Secondary 26A39

Received: 03.02.1977


 English version:
Mathematics of the USSR-Sbornik, 1977, 33:1, 81–124

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025