RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 101(143), Number 1(9), Pages 57–76 (Mi sm2945)

This article is cited in 16 papers

Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy

V. P. Zaharyuta


Abstract: Let $\mathscr D$ and $\mathcal G$ be arbitrary Stein manifolds, $E\subset\mathscr D$ and $F\subset\mathscr G$ compact sets, and $X=(E\times\mathscr G)\cup(\mathscr D\times F)$. Under certain general hypotheses it is proved that a function $f$ on $X$ which is separately analytic, i.e. for which $f(z,w)$ is analytic in $z$ in $\mathscr D$ for any fixed $w\in F$ and analytic in $w$ in $\mathscr G$ for any fixed $z\in E$, extends to an analytic function in some open neighborhood $\widetilde X$ of $X$ which is the envelope of holomorphy of $X$. The envelope of holomorphy of $X$ is studied in those cases in which $X$ has no open envelope of holomorphy.
Bibliography: 26 titles.

UDC: 517.53

MSC: 32D10

Received: 29.09.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 30:1, 51–67

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024