RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 104(146), Number 3(11), Pages 460–485 (Mi sm2949)

This article is cited in 8 papers

The angular boundary layer in mixed singularly perturbed problems for hyperbolic equations

V. F. Butuzov


Abstract: We obtain an asymptotic expansion in the small parameter $\varepsilon$ of the solution of a mixed boundary value problem for the equation
$$ \varepsilon^2\biggl(\frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}\biggr)+\varepsilon^ka(x,t)\frac{\partial u}{\partial t}+b(x,t)u=f(x,t)\qquad(0<x<l,\quad0<l\leqslant T) $$
in the two cases $k=1$ and $k=1/2$.
The asymptotics of the solution contains a regular part, consisting of ordinary boundary functions, which play a role in a neighborhood of the sides $t=0$, $x=0$, and $x=l$, and the so-called angular boundary functions, which come into play in a neighborhood of the angular points $(0,0)$ and $(l,0)$. When $k=1$, these angular boundary functions are determined from hyperbolic equations with constant coefficients; when $k=1/2$, they are determined from parabolic equations with constant coefficients.
Bibliography: 7 titles.

UDC: 517.946

MSC: Primary 35L15, 35L20, 35B25, 35B40, 35M05; Secondary 76D10

Received: 16.05.1977


 English version:
Mathematics of the USSR-Sbornik, 1977, 33:3, 403–425

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024