RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 4, Pages 542–557 (Mi sm2991)

This article is cited in 19 papers

Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras

A. A. Premet


Abstract: Let $\mathfrak G$ be a finite-dimensional restricted Lie algebra over an algebraically closed field of characteristic $p>0$. It is proved that any two Cartan subalgebras with maximal toral part in $\mathfrak G$ can be obtained from each other by means of a finite chain of elementary transformations that are similar in form to the exponents of the inner root derivations of $\mathfrak G$. The following theorem plays an important role in the proof:
Theorem. {\it Let $s$ be a toral rank of $\mathfrak G$ and $e_1,\dots,e_n$ a basis of $\mathfrak G$. There exists $\nu\in\mathbf Z_+$ and homogeneous polynomials $f_0,\dots,f_{s-1},$ in $n$ variables$,$ such that
$$ x^{[p^{s+\nu}]}=\sum_{i=0}^{s-1}f_i(x_1,\dots,x_n)x^{[p^{i+\nu}]} $$
$($here $x=x_1e_1+\dots+x_ne_n$ and $\deg f_i=p^{s+\nu}-p^{i+\nu}).$}
Bibliography: 16 titles.

UDC: 512.554

MSC: Primary 17B05, 17B20; Secondary 17B40, 17B30

Received: 09.11.1987


 English version:
Mathematics of the USSR-Sbornik, 1990, 66:2, 555–570

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025