RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 90(132), Number 2, Pages 257–274 (Mi sm3015)

This article is cited in 5 papers

An inequality of the isoperimetric type for a domain in a Riemannian space

B. V. Dekster


Abstract: We consider in the $n$-dimensional Riemannian space a domain with compact closure $T$ bounded by a regular hypersurface $\Gamma$. We assume that the sectional curvatures in $T$ are positive and the boundary $\Gamma$ is strictly convex.
We let $V$ denote the volume of $T$, $S$ the $(n-1)$-dimensional volume of $\Gamma$, $H$ the integral mean curvature of $\Gamma$, and $r$ the radius of the inscribed ball. The basic result is the inequality $V\leqslant\frac{S^2}H$, which is implied by the two estimates $V\leqslant Sr$ and $r\leqslant\frac SH$. Both these bounds are exact.
Bibliography: 6 titles.

UDC: 513.813

MSC: 52A40, 53C20

Received: 18.09.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 19:2, 257–274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024