RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 134(176), Number 4(12), Pages 530–545 (Mi sm3023)

Branching diffusion processes and systems of reaction-diffusion differential equations

R. G. Safaryan


Abstract: Systems of reaction-diffusion differential equations of the form
\begin{equation} \frac{\partial u_k}{\partial t}=L_ku_k+f_k(t,x,u),\quad x\in D\subseteq R^r,\ t>0,\ u=(u_1,\dots,u_n),\,1\leqslant k\leqslant n, \end{equation}
are considered. Under certain special conditions on the nonlinear terms $f_k$ the solutions of the Cauchy problem and of mixed problems for systems of the type (1) have a representation in the form of an average value of a suitable functional of the sample paths of a corresponding branching process with diffusion. This representation is given, and it is used together with a direct probability investigation of the branching process with diffusion to obtain results on the behavior of solutions of certain problems with a small parameter for systems of the type (1).
Bibliography: 12 titles.

UDC: 519.21

MSC: Primary 60J80, 60J60, 35K57; Secondary 35K05, 35K65

Received: 23.04.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 62:2, 525–539

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024