RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 3, Pages 45–68 (Mi sm304)

This article is cited in 16 papers

Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains

Yu. V. Egorov, V. A. Kondrat'ev, O. A. Oleinik

M. V. Lomonosov Moscow State University

Abstract: The paper is devoted to the study of the asymptotic behaviour of solutions of weakly non-linear elliptic and parabolic systems of second-order equations. In particular, the behaviour as $t\to+\infty$ of the solution of a second-order non-linear parabolic equation satisfying a Neumann boundary condition at the boundary of a bounded Lipschitz domain is studied. The proofs are based on a result on the asymptotic equivalence of two systems of ordinary differential equations.

UDC: 517.9

MSC: 35J65, 35K60

Received: 16.06.1997

DOI: 10.4213/sm304


 English version:
Sbornik: Mathematics, 1998, 189:3, 359–382

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024