Abstract:
The stationary solutions of the problem of flow past a body with finite Dirichlet integral are considered. It is found that the vector velocity $\mathbf u(\mathbf x)$ differs from its limit value $\mathbf u_\infty$ by a quantity $O(|\mathbf x|^{-1})$. By the same token it is proved that any solution of the flow problem with finite Dirichlet integral possesses a wake outside which the vorticity is exponentially small.
Bibliography: 16 titles.