RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 84(126), Number 3, Pages 378–405 (Mi sm3080)

This article is cited in 3 papers

Normal solvability of a class of differential equations of infinite order

Yu. F. Korobeinik, O. V. Epifanov


Abstract: In this article we study a differential equation of infinite order with polynomial coefficients
\begin{equation} Ly\equiv\sum^\infty_{k=1}P_k(x)y^k(x)=f(x),\qquad P_k(x)=\sum^{n_k}_{s= 0}a_s^k x^s, \end{equation}
where $\varlimsup_{k\to\infty}\frac{n_k}k=\alpha<1$.
Under given conditions on the coefficients $a_s^k$, normal solvability of equation $(1)$ is established in the class of entire functions $[1-\alpha,Q]$, where $0<Q\leqslant+\infty$ and $Q$ is determined by the coefficients $a_s^k$.
Bibliography: 10 titles.

UDC: 517.93

MSC: 34A35

Received: 01.12.1969


 English version:
Mathematics of the USSR-Sbornik, 1971, 13:3, 371–399

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025