RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 84(126), Number 3, Pages 406–424 (Mi sm3081)

On completeness of a system of functions that are close to power functions

L. A. Leont'eva


Abstract: We obtain necessary and sufficient conditions for the completeness of the system $\{f_n(x)=x^{\lambda_n}[1+\varepsilon_n(x)]\}$ in $L_p[0, a]$, where $\varepsilon_n(x)\in L_p[0, a]$, $\varlimsup_{n\to\infty}\frac{\ln m_n}{\lambda_n}<0$, $m_n = \|\varepsilon_n(x)\|_{L_p[0, a]}$, $n=1,2,\dots$; $1<p<\infty$.
Bibliography: 4 titles.

UDC: 517.51

MSC: Primary 42A64; Secondary 30A18, 30A66

Received: 07.01.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 13:3, 400–418

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025