RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 96(138), Number 1, Pages 75–82 (Mi sm3091)

This article is cited in 10 papers

An equivalent definition of $H^p$ spaces in the half-plane and some applications

A. M. Sedletskii


Abstract: Classes of functions that are holomorphic for $\operatorname{Im}z>0$ and satisfy
$$ \sup_{0<t<\pi}\int_0^\infty|f(re^{it})|^p\,dr<\infty,\qquad p\in(0,\infty), $$
are considered. It is proved that they coincide with the usual classes $H^p$ in the half-plane. This result is applied to an interpolation problem in $H^p$ in a strip and to the problem of basicity of exponential functions in the space $L^2$ on the line, with exponentially decreasing weight.
Bibliography: 8 titles.

UDC: 517.53

MSC: 30A78, 30A80, 30A18

Received: 03.01.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 25:1, 69–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024