RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 87(129), Number 2, Pages 188–203 (Mi sm3101)

This article is cited in 1 paper

Integral inequalities for conjugate harmonic functions of several variables

A. A. Bonami


Abstract: We say that a harmonic vector $F(x,y)=(u,v_1,\ldots,v_n)$ belongs to the class $S_p$ $(p>0)$ in the half-space $R^n\times(0,+\infty)$ if for any $y_0>0$ there exists a constant $C(y_0,F)$ depending only on $F$ and $y_0$ such that
$$ \int_{R^n}|F(x,y)|^p\,dx\leqslant C(y_0,F),\quad y\geqslant y_0. $$
Let $F\in S^p$ in $R^n\times(0,+\infty)$, $p>\frac{n-1}n$, $a>0$ and $\bigl\{\int_{R^n}|u(x,y)|^p\,dx\bigr\}^{1/p}\leqslant Cy^{-a}$ where $C=\mathrm{const}$. Then for $q\geqslant p$ we have
$$ \biggl\{\int_{R^n}|F(x,y)|^p\,dx\biggr\}^{1/p}\leqslant BCy^{-a-n/p+n/q}, $$
where $B$ depends only on $n$, $p$ and $a$.
Bibliography: 14 titles.

UDC: 517.581

MSC: Primary 31B05; Secondary 32A30

Received: 20.08.1970


 English version:
Mathematics of the USSR-Sbornik, 1972, 16:2, 191–208

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024