RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 1(5), Pages 27–49 (Mi sm3102)

This article is cited in 2 papers

On the number of indecomposable integral $p$-adic representations of crossed group rings

P. M. Gudivok


Abstract: Let $G$ be a finite group, $Z_p$ the ring of $p$-adic integers, $Z_p^*$ the multiplicative group of $Z_p$ and $(G,Z_p,\Lambda)$ the crossed product group ring by the factor set $\{\lambda_{a, b}\}$ ($\lambda_{a, b}\in Z_p^*;$ $a,b\in G$). We find all rings $\Lambda=(G,Z_p,\lambda)$ such that the number of indecomposable $Z_p$-representations of $\Lambda$ is finite. We note that in case $\Lambda$ is the group ring $Z_pG$ the analogous problem was solved by Berman, Heller, Reiner and the author.
Bibliography: 22 titles.

UDC: 519.49

MSC: Primary 20C10; Secondary 16A18

Received: 11.05.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:1, 27–51

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025