RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 2(6), Pages 234–252 (Mi sm3114)

This article is cited in 10 papers

Lattices in solvable Lie groups and deformations of homogeneous spaces

V. V. Gorbatsevich


Abstract: The space $\mathrm{SD}_n$ of pairs $(S,\Gamma)$ is studied, where $S$ is a solvable simply-connected Lie group and $\Gamma$ is a lattice in $S$, considered up to isomorphism. The structure of a neighborhood of a point $(S,\Gamma)\in\mathrm{SD}_n$ is described for two classes of groups $S$. In this connection deformations of homogeneous spaces are studied. Homogeneous spaces of type $K(\pi,1)$ are studied in the Appendix.
Bibliography: 14 titles.

UDC: 519.46

MSC: Primary 22E25, 22E60; Secondary 58H05

Received: 25.05.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:2, 249–266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025