Abstract:
Necessary and sufficient conditions (and also more explicit sufficient conditions) are obtained for the validity of the following estimates for differential operators with constant coefficients in the half-space $\mathbf R_+^n=\{(x,t):x\in\mathbf R^{n-1},\ t\geqslant0\}$:
\begin{gather*}
\|\mathscr R(D)u\|^2\leqslant C\|\mathscr P(D)u\|^2,\qquad
u\in C_0^\infty(\mathbf R_+^n),\quad (\mathscr Q_j(D)u)(x;0)=0\ (j=1,\dots,N),
\\
\|\mathscr R(D)u\|^2\leqslant C\biggl(\|\mathscr P(D)u\|^2+\sum_{j=1}^N\langle\!\langle\mathscr Q_j(D)u\rangle\!\rangle _{s_j}^2\biggr),
\end{gather*}
where ${\|\cdot\|}$ and $\langle\!\langle\,\cdot\,\rangle\!\rangle$
are the norms in $L_2(\mathbf R_+^n)$ and $H_s(\partial\mathbf R_+^n)$,
$$
D=\biggl(\frac1i\,\frac\partial{\partial x_1},\dots,\frac1i\,\frac\partial{\partial x_{n-1}};\frac1i\,\frac\partial{\partial t}\biggr),
$$
and $C_0^\infty(\mathbf R_+^n)$ is the space of restrictions to
$\mathbf R_+^n$ of functions in $C_0^\infty(\mathbf R^n)$.
Bibliography: 18 titles.