RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 3, Pages 125–140 (Mi sm313)

This article is cited in 12 papers

Approximation properties of exponential systems on the real line and the half-line

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: For arbitrary $a>0$ and $\alpha >1$ a class of entire functions depending on a complex parameter $\mu$ is constructed. The values of $\mu$ such that the sequence of zeros $\lambda _n$ of a function in this class generates a complete and minimal exponential system
$$ \exp \bigl (-i\lambda _nt-a|t|^\alpha \bigr) $$
in $L^p(\mathbb R)$ $(L^p(\mathbb R_+))$, $p\geqslant 2$, are described. Examples of such systems were previously known only for $\alpha=2$.

UDC: 517.5

MSC: 30B60, 42C30

Received: 30.05.1997

DOI: 10.4213/sm313


 English version:
Sbornik: Mathematics, 1998, 189:3, 443–460

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024