RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 1(5), Pages 61–87 (Mi sm3146)

This article is cited in 5 papers

Estimates of the volume of a region in a Riemannian space

B. V. Dekster


Abstract: In an $n$-dimensional Riemannian space we consider a compact space with nonnegative curvature and with a strictly convex boundary. We let $V$ be the volume of this region, $S$ the area (the $(n-1)$-dimensional volume) of its boundary, $k_1\geqslant0$ the lower bound of the two-dimensional curvatures and $r$ the radius of an inscribed ball. We prove the estimate $V\geqslant\frac1nSr$. In the case $k_1>0$ we establish that $r<\pi/\sqrt{k_1}$, and that one has the more precise estimate
$$ V\geqslant\frac S{\sin^{n-1}r\sqrt{k_1}}\int_0^r{\sin^{n-1}t\sqrt{k_1}\,dt}. $$

In both cases equality holds if the region considered is a ball in a space of constant curvature $k_1\geqslant0$.
Figures: 5.
Bibliography: 12 titles.

UDC: 513.813

MSC: Primary 53C20; Secondary 53C65

Received: 14.04.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:1, 61–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024