RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 3(7), Pages 331–352 (Mi sm3171)

This article is cited in 42 papers

Invariant subspaces of analytic functions. III. On the extension of spectral synthesis

I. F. Krasichkov-Ternovskii


Abstract: Let $f$ be a solution of the equation
\begin{equation*} S*f=0 \end{equation*}
with characteristic function $\varphi$, $D_f$ is the trace which is left by the associated diagram $D$ of the function $\varphi$ under a continuous translational displacement as a geometric figure on the Riemann surface of the function $f$. We show that $D_f$ is a one-sheeted simply connected region; the function $f$ can be uniformly approximated inside $D_f$ by linear combinations of elementary solutions. This result is a corollary of a more general theorem on the extension of spectral synthesis which is proved in this paper.
Figures: 2.
Bibliography: 14 titles.

UDC: 517.5+519.4

MSC: Primary 30A18; Secondary 13C99, 30A98

Received: 26.01.1972


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:3, 327–348

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025