RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 85(127), Number 1(5), Pages 98–114 (Mi sm3186)

This article is cited in 1 paper

Imbedding of zero-dimensional compacta in $E^3$

E. V. Sandrakova


Abstract: In this paper, for an arbitrary zero-dimensional compactum $P$ in $E^3$, a pseudoisotopy $F_t$ of the space $E^3$ onto itself is constructed, taking a tame zero-dimensional compactum $C$ into $P$; here each nondegenerate preimage of a point under the mapping $F_1$ is a tame arc.
For the zero-dimensional Antoine compactum $A$ a pseudoisotopy $F_t$ of $E^3$ onto itself is constructed taking a tame zero-dimensional compactum into it so that the mapping $F_1$ has a countable set of nondegenerate primages of points, but each of these is not a locally connected continuum.
Bibliography: 11 titles.

UDC: 513.83

MSC: 54C25

Received: 14.05.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 14:1, 99–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024