RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 5, Pages 69–86 (Mi sm322)

This article is cited in 4 papers

An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations

B. I. Golubov

Moscow Engineering Physics Institute (State University)

Abstract: Let $\hat f_c$ be the Fourier cosine transform of $f$. Then, as proved for functions of class $L^p(\mathbb R_+)$ in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937),
$$ \mathscr H(\hat f_c)=\widehat {\mathscr B(f)}_c, \qquad \mathscr B(\hat f_c)=\widehat {\mathscr H(f)}_c, $$
for the Hardy operator
$$ \mathscr H(f)(x)=\int _x^{+\infty }\frac {f(y)}y\,dy, \qquad x>0, $$
and the Hardy-Littlewood operator
$$ \mathscr B(f)(x)=\frac 1x\int _0^xf(y)\,dy, \qquad x>0. $$
In the present paper similar equalities are proved for functions of class $L^p(\mathbb R_+)$, $1<p\leqslant 2$, and the Walsh-Fourier transformation.

UDC: 517.518.2

MSC: 47B38, 47G10

Received: 28.07.1997

DOI: 10.4213/sm322


 English version:
Sbornik: Mathematics, 1998, 189:5, 707–725

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025