RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 89(131), Number 2(10), Pages 207–226 (Mi sm3227)

This article is cited in 3 papers

On a representation of the kernels of resolvents of Volterra operators and its applications

A. P. Khromov


Abstract: By using an integral representation for the kernel $M(x,t,\lambda)$ of the operator $(E-\nobreak\lambda^n M)^{-1}M$, where $E$ is the identity operator, and $Mf(x)=\int_0^xM(x,t)f(t)\,dt$, formulas are obtained for transformation operators of the solutions of integro-differential equations which generalize results of Ju. N. Valitskii (RZhMat., 1966, 4Á285); results of L. A. Sahnovich (RZhMat., 1960, 5409) on the linear equivalence of Volterra operators are generalized; and the question of the expansion in eigenfunctions of one-dimensional perturbations of Volterra operators is studied.
Bibliography: 11 titles.

UDC: 513.88

MSC: Primary 47G05, 47A10; Secondary 45J05, 47A70

Received: 02.06.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 18:2, 209–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025