RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 86(128), Number 2(10), Pages 299–313 (Mi sm3295)

This article is cited in 8 papers

Analogs of Weyl inequalities and the trace theorem in Banach space

A. S. Markus, V. I. Matsaev


Abstract: Let $A$ be a completely continuous operator acting on the Banach space $\mathfrak B$, let $\{\lambda_j(A)\}$ be the complete system of its eigenvalues (with regard for multiplicity) and let $s_{n+1}(A)$ be the distance from $A$ to the set of all operators of range dimension not greater than $n$. If
\begin{equation} \sum_{n=1}^\infty s_n(A)\ln\bigl(s_n^{-1}(A)+1\bigr)<\infty, \end{equation}
then $\operatorname{sp}A=\sum\lambda_j(A)$, where $\operatorname{sp}A$ is a functional which is linear on the set of operators satisfying condition (1) (and continuous in a certain topology) and which coincides with its trace for finite-dimensional $A$. The proof of this theorem is based on certain analogs of the famous Weyl inequalities.
Bibliography: 14 titles.

UDC: 513.881+517.43

MSC: Primary 47B10; Secondary 46H10

Received: 02.11.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 15:2, 299–312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025