RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 86(128), Number 3(11), Pages 409–418 (Mi sm3300)

This article is cited in 2 papers

An estimate from below for the spatial diameter of a surface in terms of its intrinsic radius and curvature

Yu. D. Burago


Abstract: In this paper we prove the following
Theorem. Let $F$ be a regular simply connected surface of class $C^3$ in $R^3$. There exist postitive absolute constants $C$ and $C_1$ such that if
$$ \mu=\int_F|K|\,dS<C, $$
where $K$ is the Gaussian curvature and $S$ is the area element on $F$, the estimate
$$ d\geqslant\bigl(\sqrt3-C_1\sqrt\mu\bigr)r $$
holds.

Bibliography: 11 titles.

UDC: 513.7

MSC: Primary 53A05; Secondary 49F10

Received: 11.11.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 15:3, 405–414

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025